# Fractals/Rational

Herman ring - image with c++ src code

Iteration of complex rational functions[1][2][3]

# Examples

• commons:Category:Complex rational maps
• f(z)=z2/(z9-z+0,025) [4]
• f(z)=(z3-z)/(dz2+1) where d=-0,003+0,995i [5]
• f(z)=(z3-z)/(dz2+1) where d=1,001· e2Pi/30 [6]
• Multibrot sets by Xender[7]
• $f_{\lambda}(z) = z^n + \frac{\lambda}{z^d}$[8]

## degree 6

Julia set of rational function f(z)=z^2(3 − z^4 ) over 2.png

The Julia set of the degree 6 function f :[9]

$f(z) = z^2\frac{3-z^4}{2}$

There are 3 superattracting fixed points at :

• z = 0
• z = 1
• z = ∞

All other critical points are in the backward orbit of 1.

How to compute iteration :

z:x+y*%i;
z1:z^2*(3-z^4)/2;
realpart(z1);
((x^2−y^2)*(−y^4+6*x^2*y^2−x^4+3)−2*x*y*(4*x*y^3−4*x^3*y))/2
imagpart(z1);
(2*x*y*(−y^4+6*x^2*y^2−x^4+3)+(x^2−y^2)*(4*x*y^3−4*x^3*y))/2



Find fixed points using Maxima CAS :

z1:z^2*(3-z^4)/2;
s:solve(z1=z);
s:float(s);


result :

[z=−1.446857247913871,z=.7412709105660023,z=−1.357611535209976*%i−.1472068313260655,z=1.357611535209976*%i−.1472068313260655,z=1.0,z=0.0]


check multiplicities of the roots :

multiplicities;
[1,1,1,1,1,1]


 z1:z^2*(3-z^4)/2;
s:solve(z1=z)$s:map(rhs,s)$
f:z1;
k:diff(f,z,1);
define(d(z),k);
m:map(d,s)$m:map(abs,m)$
s:float(s);
m:float(m);


Result : there are 6 fixed point 2 of them are supperattracting ( m=0 ), rest are repelling ( m>1 ):

 [−1.446857247913871,.7412709105660023,−1.357611535209976*%i−.1472068313260655,1.357611535209976*%i−.1472068313260655,1.0,0.0]
[14.68114348748323,1.552374536603988,10.66447061028112,10.66447061028112,0.0,0.0]


Critical points :

[%i,−1.0,−1.0*%i,1.0,0.0]