Electronics Handbook/Components/Thyristors

From Wikibooks, open books for an open world
< Electronics Handbook‎ | Components
Jump to: navigation, search


A thyristor is a solid-state semiconductor device with four layers of alternating N and P-type material. They act as bistable switches, conducting when their gate receives a current pulse, and continue to conduct while they are forward biased (that is, while the voltage across the device is not reversed).

  • Symbol
Thyristor layers.svg


The thyristor is a four-layer, three terminal semiconducting device, with each layer consisting of alternately N-type or P-type material, for example P-N-P-N. The main terminals, labelled anode and cathode, are across the full four layers, and the control terminal, called the gate, is attached to p-type material near to the cathode. (A variant called an SCS—Silicon Controlled Switch—brings all four layers out to terminals.) The operation of a thyristor can be understood in terms of a pair of tightly coupled bipolar junction transistors, arranged to cause the self-latching action:


Thyristors have three states:

  1. Reverse blocking mode — Voltage is applied in the direction that would be blocked by a diode
  2. Forward blocking mode — Voltage is applied in the direction that would cause a diode to conduct, but the thyristor has not yet been triggered into conduction
  3. Forward conducting mode — The thyristor has been triggered into conduction and will remain conducting until the forward current drops below a threshold value known as the "holding current"


Gate trigger voltage[edit]

The thyristor has three p-n junctions (serially named J1, J2, J3 from the anode).

Thyristor layers.svg

When the anode is at a positive potential VAK with respect to the cathode with no voltage applied at the gate, junctions J1 and J3 are forward biased, while junction J2 is reverse biased. As J2 is reverse biased, no conduction takes place (Off state). Now if VAK is increased beyond the breakdown voltage VBO of the thyristor, avalanche breakdown of J2 takes place and the thyristor starts conducting (On state).

If a positive potential VG is applied at the gate terminal with respect to the cathode, the breakdown of the junction J2 occurs at a lower value of VAK. By selecting an appropriate value of VG, the thyristor can be switched into the on state suddenly.

Once avalanche breakdown has occurred, the thyristor continues to conduct, irrespective of the gate voltage, until: (a) the potential VAK is removed or (b) the current through the device (anode−cathode) is less than the holding current specified by the manufacturer. Hence VG can be a voltage pulse, such as the voltage output from a UJT relaxation oscillator.

These gate pulses are characterized in terms of gate trigger voltage (VGT) and gate trigger current (IGT). Gate trigger current varies inversely with gate pulse width in such a way that it is evident that there is a minimum gate charge required to trigger the thyristor.

Switching characteristics[edit]

Thyristor I-V diagram.svg

In a conventional thyristor, once it has been switched on by the gate terminal, the device remains latched in the on-state (i.e. does not need a continuous supply of gate current to conduct), providing the anode current has exceeded the latching current (IL). As long as the anode remains positively biased, it cannot be switched off until the anode current falls below the holding current (IH).

A thyristor can be switched off if the external circuit causes the anode to become negatively biased. In some applications this is done by switching a second thyristor to discharge a capacitor into the cathode of the first thyristor. This method is called forced commutation.

After a thyristor has been switched off by forced commutation, a finite time delay must have elapsed before the anode can again be positively biased and retain the thyristor in the off-state. This minimum delay is called the circuit commutated turn off time (tQ). Attempting to positively bias the anode within this time causes the thyristor to be self-triggered by the remaining charge carriers (holes and electrons) that have not yet recombined.

For applications with frequencies higher than the domestic AC mains supply (e.g. 50 Hz or 60 Hz), thyristors with lower values of tQ are required. Such fast thyristors are made by diffusing into the silicon heavy metals ions such as gold or platinum which act as charge combination centres. Alternatively, fast thyristors may be made by neutron irradiation of the silicon.


  1. Thyristor