Electronics Handbook/Circuits/Operational Amplifier Configurations

From Wikibooks, open books for an open world
< Electronics Handbook‎ | Circuits
Jump to: navigation, search

Linear Configurations[edit]

Type Configuration \frac{V_o}{V_i}
Inverting amplifier Inverting amplifier  V_\mathrm{out} = - V_\mathrm{in} \left( {R_f \over R_1} \right)
Non-inverting amplifier Non-inverting amplifier  V_\mathrm{out} = V_\mathrm{in} \left( 1 + {R_2 \over R_1} \right)
Voltage follower Voltage follower  V_\mathrm{out} = V_\mathrm{in} \!\
Summing amplifier Summing amplifier  V_\mathrm{out} = - R_\mathrm{f} \left( { V_1 \over  R_1 } + { V_2 \over R_2 } + \cdots + {V_n \over R_n} \right)
Integrating amplifier Integrating amplifier  V_\mathrm{out} = \int_0^t - {V_\mathrm{in} \over RC} \, dt + V_\mathrm{initial}
Differentiating amplifier Differentiating amplifier V_\mathrm{out} = - RC \left( {dV_\mathrm{in} \over dt} \right)
Schmitt trigger Schmitt trigger Hysteresis from \frac{-R_1}{R_2}V_{sat} to \frac{R_1}{R_2}V_{sat}
Inductance gyrator Inductance gyrator L = RLRC
Negative impedance converter Negative impedance converter R_\mathrm{in} = - R_3 \frac{R_1}{R_2}
Logarithmic configuration Logarithmic configuration v_\mathrm{out} = -V_{\gamma} \ln \left( \frac{v_\mathrm{in}}{I_\mathrm{S} \cdot R} \right)
Exponential configuration Exponential configuration v_\mathrm{out} = - R I_\mathrm{S} e^{v_\mathrm{in} \over V_{\gamma}}

Non-linear Configurations[edit]

Further reading[edit]