# Electronics Handbook/Circuits/Operational Amplifier Configurations

## Linear Configurations

Type Configuration $\frac{V_o}{V_i}$
Inverting amplifier $V_\mathrm{out} = - V_\mathrm{in} \left( {R_f \over R_1} \right)$
Non-inverting amplifier $V_\mathrm{out} = V_\mathrm{in} \left( 1 + {R_2 \over R_1} \right)$
Voltage follower $V_\mathrm{out} = V_\mathrm{in} \!\$
Summing amplifier $V_\mathrm{out} = - R_\mathrm{f} \left( { V_1 \over R_1 } + { V_2 \over R_2 } + \cdots + {V_n \over R_n} \right)$
Integrating amplifier $V_\mathrm{out} = \int_0^t - {V_\mathrm{in} \over RC} \, dt + V_\mathrm{initial}$
Differentiating amplifier $V_\mathrm{out} = - RC \left( {dV_\mathrm{in} \over dt} \right)$
Schmitt trigger Hysteresis from $\frac{-R_1}{R_2}V_{sat}$ to $\frac{R_1}{R_2}V_{sat}$
Inductance gyrator L = RLRC
Negative impedance converter $R_\mathrm{in} = - R_3 \frac{R_1}{R_2}$
Logarithmic configuration $v_\mathrm{out} = -V_{\gamma} \ln \left( \frac{v_\mathrm{in}}{I_\mathrm{S} \cdot R} \right)$
Exponential configuration $v_\mathrm{out} = - R I_\mathrm{S} e^{v_\mathrm{in} \over V_{\gamma}}$