Electronics/History/Chapter 7

From Wikibooks, open books for an open world
Jump to navigation Jump to search

Radio Astronomy: Looking at space

Schumann Resonance[edit | edit source]

The phenomenon is named after W. O. Schumann, who predicted this phenomenon in the 1950s, and helped detect its existence.

CBR[edit | edit source]

The CBR was predicted by George Gamow, Ralph Alpher, and Robert Hermann in the 1940s and was accidentally discovered in 1964 by Penzias and Wilson, who received a Nobel Prize for this discovery. The CBR had, however, been detected and its temperature deduced in 1941, seven years before Gamow's prediction. Based on the study of narrow absorption line features in the spectra of stars, the astronomer Andrew McKellar wrote: "It can be calculated that the 'rotational' temperature of interstellar space is 2 K."

Of these experiments, the Cosmic Background Explorer (COBE) satellite that was flown in 1989-1996 is probably the most famous and which made the first detection of the large scale anisotropies (other than the dipole). In June 2001, NASA launched a second CBR space mission, WMAP, to make detailed measurements of the anisotropies over the full sky. Results from this mission provide a detailed measurement of the angular power spectrum down to degree scales, giving detailed constraints on various cosmological parameters. The results are broadly consistent with those expected from cosmic inflation as well as various other competing theories, and are available in detail at NASA's data center for Cosmic Microwave Background (CMB) [ed. see links below],

A third space mission, Planck, is to be launched in 2007. Unlike the previous two space missions, Planck is a collaboration between NASA and ESA (the European Space Agency).

CBR and Non-Standard Cosmologies

During the mid-1990's, the lack of detection of anisotropies in the CBR led to some interest in nonstandard cosmologies (such as plasma cosmology) mostly as a backup in case detectors failed to find anisotropy in the CBR. The discovery of these anisotropies combined with a large amount of new data coming in has greatly reduced interest in these alternative theories.

Some supporters of non-standard cosmology argue that the primodorial background radiation is uniform (which is inconsistent with the big bang) and that the variations in the CBR are due to the Sunyaev-Zel'dovich effect mentioned above (among other effects).