Designing Sound in SuperCollider/Electricity

From Wikibooks, open books for an open world
Jump to: navigation, search

Fig 39.3: Hum source[edit]

Contains the subpatch shown in fig 39.2.

(
{
var humSource, noise, comb;
 
humSource = Clip.ar(LFSaw.ar([99.8, 100.2], 1, 0.5, 0.5).sum - 1, -0.5, 0.5);
 
noise = LPF.ar(LPF.ar(WhiteNoise.ar,2),2);
noise = noise * noise * 500;
 
humSource = humSource * noise;
 
// fig 39.2: Comb unit
comb = DelayC.ar(InFeedback.ar(10), delaytime: (noise+20)/1000);
OffsetOut.ar(10, (humSource + OnePole.ar(comb * 0.2, exp(-2pi * (3000 * SampleDur.ir)))));
 
comb!2 ;
 
}.play;
)


Fig 39.8: Hum and sparks[edit]

Contains the subpatches shown in fig 39.2, 39.4, 39.5, 39.6 & 39.7. The scope windows show the same information as in the diagnostic graphs of fig 39.4.

(
{
var noise, phasor, chirpPulse, randGate, chirpAmp, clip, snap, trig, formant, comb;
 
phasor = LFSaw.ar([-99.8, 100.2], 1, 0.5, 0.5);
 
noise = WhiteNoise.ar!2;
noise[0] = OnePole.ar(noise[0], exp(-2pi * (0.1 * SampleDur.ir)));
noise[0] = OnePole.ar(noise[0], exp(-2pi * (0.1 * SampleDur.ir)));
noise[0] = noise[0].max(0) * 700 + 3;
 
 
// fig 39.4: Chirp pulse
chirpPulse = phasor[0].scope * noise[0];
chirpPulse = chirpPulse.min(1) - (chirpPulse.max(1) - 1 * 1e+09).min(1);
chirpPulse.scope;
chirpPulse = ((chirpPulse + 0.1)**2 * 12 * 2pi).cos * chirpPulse;
chirpPulse.scope;
chirpPulse = (chirpPulse - OnePole.ar(chirpPulse, exp(-2pi * (300 * SampleDur.ir))));
 
 
// fig 39.5: Random Gate
randGate = WhiteNoise.ar;
randGate = OnePole.ar(randGate, exp(-2pi * (3 * SampleDur.ir)));
randGate = OnePole.ar(randGate, exp(-2pi * (3 * SampleDur.ir)));
randGate = Clip.ar(noise.max(2) - 0.0008 * 1e+09, 0, 1);
randGate = OnePole.ar(randGate, exp(-2pi * (30 * SampleDur.ir)));
randGate = chirpPulse * randGate;
 
 
noise[1] = LPF.ar(LPF.ar(WhiteNoise.ar,2),2);
noise[1] = noise[1] * noise[1] * 500;
 
 
clip = Clip.ar((phasor.sum - 1) * noise[1], -0.9, 0.1);
 
 
chirpAmp = OnePole.ar(clip, exp(-2pi * (15 * SampleDur.ir)));
chirpAmp = OnePole.ar(chirpAmp, exp(-2pi * (15 * SampleDur.ir)));
chirpAmp = Clip.ar((chirpAmp * 500).max(0.1) - 0.1 * 1e+09, 0, 1);
chirpAmp = OnePole.ar(chirpAmp, exp(-2pi * (30 * SampleDur.ir)));
 
 
chirpPulse = chirpPulse * chirpAmp * 0.6;
trig = (Amplitude.kr(clip)>0.03);
 
 
// fig 39.7: Spark snap
snap = 0!2;
snap[0] = EnvGen.ar(Env.new([0,1,0], [0, 0.5]), trig);
snap[0] = snap[0] * snap[0] * snap[0] * WhiteNoise.ar * 0.5;
snap[1] = EnvGen.ar(Env.new([0,1,0], [0, 10/1000]), trig);
snap[1] = SinOsc.ar(snap[1] * 7000 + 20);
snap = snap.sum * 0.05;
 
 
// fig 39.6: Spark formant
formant = BPF.ar(snap, 1.8 * [4600, 7200, 480, 720], [5,5,7,8].reciprocal);
formant = formant[0..1].sum * 2 + formant[2] * 1.2 + formant[3] * 2.5;
formant = BPF.ar(formant, 2500, 0.5.reciprocal);
 
 
// fig 39.2 Comb unit
comb = DelayC.ar(InFeedback.ar(10), delaytime: (noise[1] + 20)/1000);
OffsetOut.ar(10, (chirpPulse + clip + snap + OnePole.ar(comb * 0.2, exp(-2pi * (3000 * SampleDur.ir)))));
 
comb!2;
 
}.play;
)